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Abstract

Background: The Pessary for the Prevention of Preterm Birth Study (PS3) is an international, multicenter, randomized
clinical trial designed to examine the effectiveness of the Arabin pessary in preventing preterm birth in pregnant
women with a short cervix. During the design of the study two methodological issues regarding power and sample
size were raised. Since treatment in the Standard Arm will vary between centers, it is anticipated that so too will the
probability of preterm birth in that arm. This will likely result in a treatment by center interaction, and the issue of how
this will affect the sample size requirements was raised. The sample size requirements to examine the effect of the
pessary on the baby’s clinical outcome was prohibitively high, so the second issue is how best to examine the effect
on clinical outcome. The approaches taken to address these issues are presented.

Results: Simulation and sensitivity analysis were used to address the sample size issue. The probability of preterm
birth in the Standard Arm was assumed to vary between centers following a Beta distribution with a mean of 0.3 and
a coefficient of variation of 0.3. To address the second issue a Bayesian decision model is proposed that combines the
information regarding the between-treatment difference in the probability of preterm birth from PS3 with the data
from the Multiple Courses of Antenatal Corticosteroids for Preterm Birth Study that relate preterm birth and perinatal
mortality/morbidity. The approach provides a between-treatment comparison with respect to the probability of a bad
clinical outcome. The performance of the approach was assessed using simulation and sensitivity analysis.
Accounting for a possible treatment by center interaction increased the sample size from 540 to 700 patients per arm
for the base case. The sample size requirements increase with the coefficient of variation and decrease with the
number of centers. Under the same assumptions used for determining the sample size requirements, the simulated
mean probability that pessary reduces the risk of perinatal mortality/morbidity is 0.98. The simulated mean decreased
with coefficient of variation and increased with the number of clinical sites.

Conclusion: Employing simulation and sensitivity analysis is a useful approach for determining sample size
requirements while accounting for the additional uncertainty due to a treatment by center interaction. Using
a surrogate outcome in conjunction with a Bayesian decision model is an efficient way to compare important
clinical outcomes in a randomized clinical trial in situations where the direct approach requires a prohibitively
high sample size.
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Background
The Pessary for the Prevention of Preterm Birth Study (P3S)
is an international, multicenter, randomized clinical trial
(RCT) to be conducted in 80 clinical centers by the Centre
for Mother, Infant, and Child Research at the Sunnybrook
Research Institute in Toronto, and is designed to answer the
following primary question: Does the introduction of the
Arabin pessary reduce the probability of preterm birth in
pregnant women with a short cervix? The Arabin pessary is
a simple, non-invasive therapeutic option for preventing
preterm birth. Closing the cervix with a silicone ring (that is
removed at term gestation) is a simple, relatively painless
procedure that can be performed in an office setting and
does not require surgery, hospitalization or anesthesia. To
be eligible for randomization, women must present with a
singleton pregnancy between 14 and 24 weeks gestation,
and be identified by ultrasound to have a cervical length of
between 10 and 24 mm. Randomization will be by random-
sized blocks, stratified by center and gestational age. The
primary outcome is preterm birth (i.e., birth at or prior to
33+6/7 weeks’ gestation). Since there is no agreed-upon
standard of care, women will be randomized between (1)
the current management of short cervix as determined
by the center’s policy or at the attending physician’s dis-
cretion (Standard) and (2) Arabin pessary together with
any additional care at the attending physician’s discre-
tion (Treatment).
Two issues regarding sample size and power arose in

the design and proposed analysis of P3S. The investigators
assume that since treatment in the Standard Arm will vary
between clinical centers, so might the probability of pre-
term birth in that arm. However, since all patients in the
Treatment Arm are allocated to pessary, the investigators
assume that due to a floor effect, if treatment does reduce
the probability of preterm birth, the additional effect of
any other interventions will be minimal and the probabil-
ity of preterm birth in the Treatment Arm will not vary
substantially between centers. As a result the treatment
effect will vary between centers. This will increase the
uncertainty with which the overall treatment effect is esti-
mated and require a larger sample size to maintain type I
and II error probabilities. To account for this in the ana-
lysis a random-effects model that allows the treatment
effect to vary by clinical center (i.e, treatment by center
interaction) should be used. The above assumption for the
Treatment Arm is not required for the analysis using a
random-effects model to be valid, although relaxing it
could increase the uncertainty further. A bigger issue, and
the one addressed in this paper, is what effect will a treat-
ment by center interaction have on the sample size
requirements.
Many authors have discussed the issue of center effect

in RCTs [1–13]. Investigators who suspect that the treat-
ment effect varies by clinical center (i.e., the existence of

treatment by center interaction) have three strategies to
choose from. The first is to ignore the issue. The second
is to adopt a model with a fixed effect for center. The
third is to adopt a model with random effect for center.
The disadvantage of the “ignore it” strategy is that if a treat-
ment by center interaction does exist then the uncertainty
regarding the estimated treatment effect will be underesti-
mated, leading to an unknown inflation of the type I error
probability. The disadvantage of a fixed-effects model is
that the inference is restricted to the centers in the trial. As
argued by Feaster et al. [13] and others, inference from a
fixed-effects model is more appropriate for an early phase
III trial with a small number of centers, the positive results
of which should lead to a more pragmatic trial with more
centers and employing a random-effects model. Further-
more, for a fixed-effects model the inference for each center
is based solely on their own data since there is no param-
eter in the model that represents an overall treatment
effect. On the other hand, the random-effects model does
contain a parameter for overall treatment effect and adjusts
the uncertainty to account for the between-center variance
in treatment effect. In addition, shrinkage-type estimation,
which uses the data from all centers, can be used to provide
center-specific inference [14]. One must assume that the
centers in the trial are a random sample of centers to which
inference is to be made. Although this may seem a strong
assumption, it is reasonable to expect that most RCTs are
done to make inference to a population broader than just
the centers in the trial, and without this assumption, valid
inference beyond the centers in the trial is problematic.
One disadvantage of the random-effects model is that it is
generally accepted that a reasonably large number of centers
are required to provide a robust estimate of the between-
center variance [12]. In addition, since the between-center
variance is usually unknown in advance, sample size deter-
minations that account for it can be challenging. Rauden-
bush and Liu [8] provide power and sample size solutions
adjusting for treatment by center interaction when the out-
come variable is continuous. Less well developed are
methods for adjusting sample size requirements for a binary
outcome variable.
The second issue is how best to answer the question: Does

the introduction of the pessary reduce the probability of a
bad clinical outcome for the babies? The sample size to an-
swer this question directly by observing the clinical outcome
of the infants in P3S is prohibitively high. As an alternative
the investigators propose a Bayesian approach, combining
the information regarding the between-treatment difference
in the probability of preterm birth from P3S with the data
from the Multiple Courses of Antenatal Corticosteroids for
Preterm Birth Study (MACS) [15] that relate preterm birth
and perinatal mortality/morbidity. This analysis will provide
an estimate of the reduction in the probability of the clinical
outcome from the introduction of the pessary. The question
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of concern to the investigators is: Will the proposed analysis
answer the question regarding clinical outcome with suffi-
cient certainty?
Many authors [16–30] have discussed the issues related

to using surrogate outcomes in RCTs. Ellenberg and
Hamilton [16] discuss the use of a tumor marker as a sur-
rogate for tumor response and emphasize the value of
identifying valid surrogates for clinical outcomes that have
insufficient sensitivity and specificity. Although Wittes,
Lakatos and Probstfield [17] conclude that the use of valid
surrogate outcomes can reduce sample size and shorten
trial durations, they point out several problems that can
arise, especially regarding informative censoring. A criter-
ion proposed by Prentice [18], and supported by others
[27, 28], for a valid surrogate is stated as follows: a variable
for which a valid test of the null hypothesis of no treat-
ment effect is also a valid test of the corresponding
hypothesis based on the clinical outcome. The author dis-
cusses the implementation of the criterion and applies it
to examples given in [16, 17, 21]. Freedman, Graubard
and Schatzkin [19] take issue with the implementation of
the Prentice criterion, arguing that unless the observed
treatment effect exceeds its standard error by a factor of
four, the procedure will usually only lead to a weak valid-
ation of the surrogate outcome. Fleming et al. [20] discuss
the implementation of the Prentice criterion in the con-
text of cancer and AIDS trials. Day and Duffy [22] demon-
strate how, in the British Breast Screening Frequency
Trial, the use of surrogate outcomes can dramatically
reduce the variance of the estimate of treatment effect and
shorten the duration of the trial. Fleming and DeMets [23]
argue that the Prentice criterion for a valid surrogate is
often not meet and use examples to support their argu-
ment. They point out that numerous pathways might affect
the clinical outcome, not all which will be mediated
through the surrogate. The authors also raise the issue that
the interventions might affect the clinical outcome in ways
other than through the surrogate. Daniels and Hughes [24]
proposed a Bayesian meta-analysis approach for examining
the association between the between-treatment difference
in the surrogate and the between-treatment difference in
the clinical outcome. Buyse and Molenberghs [25] take
issue with the Prentice procedure for validating surrogate
outcomes. They propose an alternative method for valid-
ation and provide an illustration for the situation where the
surrogate and clinical outcome are either both normal or
both binary. These methods are extended by Molenberghs,
Geys and Buyse [29] for the situation where the surrogate
is binary and the clinical outcome is continuous, and vice
versa. Begg and Leung [26] argue that conceptual strategy
for the Prentice procedure is flawed and propose an alter-
native structure for validating surrogate outcomes. Baker,
Izmirlian and Kipnis [30] address the issues raised by Day
and Duffy [22] and Begg and Leung [26].

The issue of sample size inflation is addressed in the next
section where simulations are used to determine the re-
quired sample size in the presence of treatment by center
interaction. In the section following that, a Bayesian model
is proposed for comparing treatment arms with respect to
perinatal mortality/morbidity by combining the information
regarding the between-treatment arm difference in the
probability of preterm birth from P3S with the information
relating preterm birth and perinatal mortality/morbidity
from MACS. The performance of the proposed analysis is
assessed using simulations. Although the two issues are
seemingly separate, they are related since both are associ-
ated with the same trial, and both deal with power and
sample size questions. The first issue deals with loss of
power due to between-center variation in treatment effect,
while the second deals with lack of power because the clin-
ical outcome is so rare.

Methods
The P3S is currently under review for funding from the
Canadian Institutes for Health Research. If funding is re-
ceived then the trial will be registered and the appropriate
ethics approval will be sought by the coordinating center
and all the clinical centers. If P3S is funded then informed
consent will be sought for each participant enrolled.

Between center treatment-effect variation and sample size
Simulations were used to determine sample size under
the assumption that the treatment effect, if it exists, will
vary between centers. To model the assumption for the
Standard Arm, the preterm probability was assumed to
vary between centers following a Beta distribution, with
parameters a and b. That is, πSi ~ Beta(a, b), where πSi is
the preterm probability on the Standard Arm in the ith

clinical center. The Beta distribution was chosen because
it yields values between 0 and 1, and as illustrated below,
the values for a and b can be chosen to provide the de-
sired mean and between-center variance. Furthermore,
the Beta distribution is used in Bayesian analysis for pro-
portions since it is conjugate to binomial sampling. That
is, if the prior distribution for a proportion is Beta, then
with binomial sampling, the posterior distribution will
also be Beta. The parameters a and b were chosen to
provide (1) a mean 0.3 that reflects the current preterm
probability as determined by available evidence [15, 31]
and (2) as the base case, a coefficient of variation (stand-
ard deviation/mean) of 0.3 to reflect a reasonable
amount of between-center variation. In the results sec-
tion solutions for values of the coefficient of variation
ranging from 0.1 to 0.4 are given for comparison.
Since πSi ~ Beta(a, b),
E πSið Þ ¼ a

aþb and V πSið Þ ¼ ab
aþbð Þ2 aþbþ1ð Þ ;

Willan Trials  (2016) 17:310 Page 3 of 8



where E and V are the expectation and variance func-
tions, respectively. Therefore, for P3S:

E πSið Þ ¼ a
aþb ¼ 0:3 and

CV πSið Þ ¼
ffiffiffiffiffiffiffiffiffiffi
V πSið Þ

p
E πSið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

aþbð Þ2 aþbþ1ð Þ
q

= a
aþb ¼ 0:3;

where CV is the coefficient of variation function. Solving
these equations yields:

a ¼ 1−c2d
c2 1þ dð Þ and b ¼ 1−c2d

c2d 1þ dð Þ ; where c

¼ CV πSið Þ and d ¼ E πSið Þ
1−E πSið Þ :

Thus, a = 7.478 and b = 17.45, and for these parameter
values there is a 95 % probability that a center’s preterm
probability lies between 0.16 and 0.46, representing a
reasonably wide range. (This is the variation in the true
probabilities, not the variation in the observed propor-
tions, which also include sampling variation.) The pre-
term probability in the Treatment Arm, denoted πT, for
which the investigators required sufficient power was set
at 0.225 and fixed across clinical centers, yielding under
the alternative hypothesis, a mean relative risk reduction
of 0.25 and a mean number needed to treat of about 13.
By assuming a CV(πSi) = 0.3, 79 % of the centers in the
Standard Arm have a probability of preterm birth greater
than 0.225.
The simulation procedure to determine the required

sample size proceeded as follows.

� A chosen sample size of patients was allocated
randomly between the 80 centers with equal
probability among centers with the constraint that
there had to be at least six patients in each center

� Because randomization is to be stratified-blocked by
center, within each center, half the patients were
assigned to the Standard Arm and half to the Treat-
ment Arm

� Those assigned to the Treatment Arm had their
outcome determined by a Bernoulli distribution with
probability 0.225

� Those assigned to Standard in ith center had their
outcome determined by a Bernoulli distribution
with a probability that was sampled from
Beta(7.478, 17.45)

� The resulting data were analyzed using a random-
effects model, allowing treatment effect to vary be-
tween centers, using risk difference as the measure
of treatment effect

� The simulation was replicated 10,000 times, and the
proportion of replicates in which statistical significance
(two-sided, 5 % level) was achieved was recorded

� If the proportion of replicates which achieved
statistical significance was less (greater) than 80 %,

the sample size was increased (decreased) and the
procedure was repeated

Assessing the treatment effect on clinical outcome
The required sample size if perinatal mortality/morbidity
was the primary outcome is 37,500 per arm. This was
determined by simulation in the same way as the entries in
Table 1 and is based on having an 80 % power to achieve
statistical significance (two-sided, level 0.05) if the addition
of the Arabin pessary reduced the probability of a bad out-
come from 1 % to 0.75 %, a 25 % reduction and a number
needed to treat of 400. Again, it was assumed that the prob-
ability of a bad outcome in the Standard Arm varied be-
tween centers following a Beta distribution with a coefficient
of variation of 0.3 and a mean of 0.01 (i.e., Beta(9.9, 89.1). A
total sample size of 75,000 is impossibly high, and the inves-
tigators have proposed a Bayesian analysis combining the
information regarding the between-treatment difference in
the probability of preterm birth from P3S with the data re-
lating preterm birth and perinatal mortality/morbidity from
the singleton pregnancies from MACS. In MACS perinatal
mortality/morbidity was a composite measure of perinatal
mortality or serious neonatal morbidity, which included
respiratory distress syndrome, bronchopulmonary dysplasia,
severe intraventricular hemorrhage, cystic periventricular
leukomalacia and necrotizing enterocolitis. Among the 1463
singleton pregnancies in MACS, 530 were preterm, of which
166 experienced perinatal mortality/morbidity, and of the
933 who were not preterm 5 did. This yields an estimated
probability of perinatal mortality/morbidity for preterm ba-
bies of 166/530 = 0.31 and an estimated probability of free-
dom from perinatal mortality/morbidity for term babies of
928/933 = 0.99.
In this analysis the parameter of interest is Δ = pT − pS,

where pT and pS are the probabilities of perinatal mortal-
ity/morbidity in babies whose mothers are randomized
to the Treatment and Standard Arms, respectively. Thus,
Δ is the between-treatment arm difference in the prob-
ability of perinatal mortality/morbidity.
The quantity pT =πptb|T × τpmm|ptb+πtb|T× τpmm|tb, where:

� πptb|T is the probability of preterm birth for mothers
randomized to the Treatment Arm

� τpmm|ptb is the probability of perinatal mortality/
morbidity in a baby who is born preterm

� πtb|T = 1 − πptb|T is the probability of term birth for
mothers randomized to the Treatment Arm

� τpmm|tb is the probability of perinatal mortality/
morbidity in a baby who is born at term

Similarly, pS = πptb|S × τpmm|ptb + πtb|S × τpmm|tb, where:

� πptb|S is the probability of preterm birth for mothers
randomized to the Standard Arm
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� πtb|S = 1 − πptb|S is the probability of term birth for
mothers randomized to the Standard Arm

Substituting and simplifying, we get:

Δ ¼ πptbjT−πptbjS
� �� τpmmjptb−τpmmjtb

� �
:

Thus, if there is a one-to-one correspondence between
preterm birth and the clinical outcome, i.e. τpmm|ptb = 1
and τpmm|tb = 0 then Δ = (πptb|T − πptb|S), and inference
regarding the clinical outcome can be based solely on
preterm birth. Since the conditions τpmm|ptb = 1 and
τpmm|tb = 0 will never hold, inference about Δ will be
made by deriving a probability distribution for it from
the posterior distributions for τpmm|ptb and τpmm|tb based
on the data from MACS, and for (πptb|T − πptb|S) based
on the data from P3S. Assuming the uninformative prior
Beta(1, 1) for τpmm|ptb and for τpmm|tb, and recalling that
the Beta distribution and binomial sampling are conju-
gate, the posterior distributions [32], given the data, are:

� τpmm|ptb ~ Beta(yptb + 1, nptb − yptb + 1), where from
MACS nptb is number of preterm births of whom
yptb experienced the clinical outcome. Recalling that
nptb = 530 and yptb = 166, then τpmm|ptb ~
Beta(167,365)

� τpmm|tb ~ Beta(ytb + 1, ntb − ytb + 1), where from
MACS ntb is number of term births of whom ytb
experienced the clinical outcome. Recalling that ntb
= 933 and ytb = 5, then τpmm|tb ~ Beta(6,929)

The distribution for (πptb|T −πptb|S) will come from a
random-effects regression model for the outcome of pre-
term birth using the P3S data. The model will include a
fixed effect for Treatment Arm and a random effect for
center, allowing for the treatment effect to vary by center.
By assuming an uninformative normal prior, the posterior
distribution for (πptb|T−πptb|S) will be Normal(μ, ν), where μ
is the estimate of the coefficient for treatment group and ν
is the associated variance. Using the above distributions, a
distribution for Δ will be sampled. From the sampled distri-
bution, the probability that Δ is less than 0 (i.e., the probabil-
ity that pessary reduces the risk of the perinatal mortality/
morbidity) will be determined. In addition, 95 % credible in-
tervals for Δ will be determined. By using uninformative
priors the inference regarding Δ will be conditional on using
the data from P3S and MACS only.
The performance of the proposed analysis was exam-

ined using simulation as follows:

� The trial of 700 per arm was simulated 10,000 times
using the same assumptions for deriving the sample
size given above

� For each simulation:

o The mean and variance of the estimator of
πptb|T − πptb|S were determined
o 10,000 samples were taken from a normal
distribution with that mean and variance
o 10,000 samples were taken from the Beta
distributions for τpmm|ptb and τpmm|tb, as given
above
o For each sample Δ was determined as (πptb|T
− πptb|S) × (τpmm|ptb − τpmm|tb) from the sampled
values
o The proportion of samples for which Δ was
negative was recorded

Results
Between-center treatment-effect variation and sample size
For the base-case parameters listed in the next sentence
the required sample size is 700 patients per arm. E(πSi)
= 0.3; CV = 0.3; πT = 0.225; number of centers = 80; type
I error probability = 0.05 (two-sided); and type II error
probability = 0.2. To examine robustness with respect to
the CV and number of centers, the associated sample
size requirements are given in Table 1. The sample size
required increases with the coefficient of variation, since
larger CVs result in greater uncertainty, and decreases
with the number of centers, as noted by Feaster et al.
[13] and Raudenbush and Liu [8]. The effect of the num-
ber of centers is explained in the Appendix. For 80 cen-
ters and a CV of 0, the required sample size was 540 per
arm. Therefore, the increase in total required sample
size to account for the between-centers variance is 320.
For this example the assumption has been made that

there is no between-center variation in the probability of
preterm birth in the Treatment Arm. This assumption
was made on the assessment that if the pessary does de-
crease the probability of preterm birth by 0.075 (i.e., the
alternative hypothesis is true), a floor effect is expected,
meaning that any additional interventions are unlikely to
decrease the probability much further, and so even if the
additional interventions vary between center, it is un-
likely to result in between-center variation in the prob-
ability in preterm birth. To examine the robustness of
the assumption in this example consider the following.

Table 1 Required sample size per arm as a function of the
coefficient of variation and the number of clinical centers

Coefficient
of variation

Probability
that πSi >0.225

Number of clinical centers

20 40 60 80 100

0 1 610 580 560 540 520

0.1 0.99 660 600 580 560 530

0.2 0.90 880 700 650 600 560

0.3 0.79 1840 1000 800 700 640

0.4 0.71 50,000 1700 1200 900 800
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From the Appendix, under the assumption that each
center randomizes n subjects, the variance of the esti-

mated treatment effect is given by V ¼ 2 σ2Sþσ2Tð Þ
N þ vSþvT

K ,
where K is the number of centers;
N is the total sample size, i.e., N = n × K;
σS
2 = πS(1 − πS) is the between-patient variance in the

Standard Arm;
σT
2 = πT(1 − πT) is the between-patient variance in the

Treatment Arm;
vS and vT are the between-center variances in the

Standard and Treatment Arms, respectively, where vi
= (pi ×CVi)

2, for i = S, T.
Under the alternative hypothesis, πS = 0.3 and πT = 0.225.

In this example K = 80 and N = 1400. Thus, if there is no
between-center variation in either arm (i.e., CVS =CVT = 0,
and therefore vS = vT = 0), then V = 5.49 × 10− 4. Based on
our assumption that there is between-center variation in
the Standard Arm but not the Treatment Arm (i.e., CVS =
0.3 and CVT = 0), V = 6.50 × 10− 4, representing a 18.4 %
increase. Now if we allow some residual between-center
variation in the Treatment Arm, say CVT = 0.1, then V =
6.57 × 10− 4, which is a mere 0.97 % increase. The small
effect of the between-center variability in the Treatment
Arm relates to the fact that the between-center variance, vT,
is the square of the product of πT and CVT, both of which
are smaller than the corresponding quantities in the Stand-
ard Arm. Even a CVT of 0.15 increases the variance by only
2.19 %. The conclusion is that in this example the assump-
tion of no between-center variation is reasonably robust,
especially considering that 0.3 was selected as an upper
bound for CVS.

Assessing the treatment effect on clinical outcome
The average (over the 10,000 simulated trials) of the
proportion of negative Δ’s was 0.98 and the 5th percent-
ile was 0.87. This provides strong evidence that if the
pessary reduces the probability of preterm birth from 0.3
to 0.225, and 700 patients per arm are recruited, there
will be a very high probability of concluding that the
pessary reduces the probability of perinatal mortality/
morbidity. The 5th percentile and average proportion of

negative Δ’s are given in Table 2 as a function of the
number of centers and the between-center coefficient of
variation of the probability of preterm birth in the
Standard Arm. As expected the proportion of negative
Δ’s increases with increasing number of clinical sites and
decreasing coefficient of variation. To save computation
time the values given in Table 2, except those of the base
case, are based on 1000 simulated trials and 10,000
samples.
The SAS programs used to generate Tables 1 and 2

can be found at www.andywillan.com/downloads.

Discussion
In a multicenter RCT a treatment by center interaction
may exist for any number of reasons. It can exist because
of differences in patient referral patterns, clinician skills,
supportive care, implementation of the Treatment Arm,
clinical evaluation or, as in P3S, with variations in the
Standard Arm. The risk of a treatment by center inter-
action is often ignored [13]. This can lead to inflated type
I error probabilities due to underestimating uncertainty,
and inflated type II error probabilities due to inadequate
sample sizes. It is well known that random-effect models
provide valid estimates of variances of the estimated treat-
ment effects, and the models can be adopted after a trial is
completed if a treatment by center interaction is observed.
However, sample sizes cannot be adjusted if an interaction
is observed once the trial has been completed. In which
case the inflation of type II error probability (i.e., reduc-
tion in power) has to be accepted. Modeling the effect that
a treatment by center interaction has on sample size is
challenging since it depends on many factors, many of
which might be unknown at the time of trial planning.
These include the number of centers, the degree to which
the treatment effect varies between centers and the distri-
bution of patients between centers. Other factors include
the nature of the outcome variable and the metric used
for the treatment comparison. Employing simulation and
sensitivity analysis, as illustrated on the P3S above, is a
fruitful, albeit time-consuming, approach. The simulation
process depends on the specific causes of the between-
center variability and other factors as discussed above.

Table 2 The average and (5th percentile) of the proportion of negative Δ’s as a function of the coefficient of variation and the number
of clinical centers

Coefficient
of variation

Probability
that πSi > 0.225

Number of clinical centers

20 40 60 80 100

0 1 0.98 (0.88) 0.99 (0.94) 0.98 (0.93) 0.99 (0.93) 0.99 (0.94)

0.1 0.99 0.98 (0.87) 0.98 (0.92) 0.99 (0.92) 0.98 (0.92) 0.99 (0.94)

0.2 0.90 0.97 (0.88) 0.97 (0.85) 0.98 (0.90) 0.98 (0.90) 0.99 (0.92)

0.3 0.79 0.97 (0.87) 0.96 (0.79) 0.97 (0.85) 0.98 (0.87) 0.98 (0.90)

0.4 0.71 0.97 (0.86) 0.94 (0.73) 0.96 (0.79) 0.97 (0.85) 0.98 (0.89)
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Consequently, many applications require a custom pro-
gramming code.
The Bayesian decision model approach proposed in the

previous section uses a surrogate outcome from an RCT in
combination with data from other sources to make treat-
ment comparison with respect to more clinical outcomes.
To meet the Prentice criterion for a valid surrogate it must
be on the causal pathway between the intervention (Treat-
ment versus Standard) and the clinical outcome, and the
entire effect of the intervention on the clinical outcome
must be through its effect on the surrogate. Investigators
are well advised to consider these issues carefully. Regard-
ing P3S, it is firmly accepted that preterm birth is a risk
factor for bad clinical outcome and that interventions that
reduce the probability of preterm birth will reduce the risk
such an outcome [33–35].
The use of a surrogate outcome in a Bayesian decision

model is particularly useful when the clinical outcomes are
rare or occur well in to the future. For binary outcomes the
required sample size is dominated by the one over the
square of the risk difference; the smaller the risk difference,
the greater the required sample size. Assuming constant
relative risks, the ratio of the risk difference for a surrogate
to that for the clinical outcome equals the ratio of the corre-
sponding risks of the outcomes in the Standard Arm. For
example, in the P3S trial the risks in the Standard Arm for
surrogate and clinical outcome are 0.3 and 0.01, respectively,
and consequently one over the square of the risk difference
for the clinical outcome is 900 times that for the surrogate.
Even when the surrogate and clinical risks do not differ
greatly, the decision model approach has distinct advantages
for clinical outcomes that occur much later in time, such as
survival. If long-term survival is the clinical outcome of
interest, it might be the case that the research question will
no longer be relevant after the required number of events
have been observed since interest may have shifted to new
interventions.
The requirement that the entire effect of the interven-

tion (Treatment versus Standard) on the clinical outcome
must be through its effect on the surrogate can be easily
overlooked. For example, if relapse is used as a surrogate
for survival, care must be taken that treatment does not
negatively affect survival through some long-term adverse
outcome. The other limiting factors are the relevance and
strength of the evidence relating the surrogate to the clin-
ical outcome. Critical appraisal of the evidence, including
appropriateness of the sample and the methodology used
is crucial for establishing the credibility of any application
of a decision model.
The proposed Bayesian approach mirrors the decision

analytic approaches used in health economics for asses-
sing the cost-effectiveness of health care interventions
[36]. A number of issues come to the fore concerning
the quality of such analyses [37], and investigators must

be prepared to defend the assumptions made in building
the model. For P3S the model itself was very simple.
Nonetheless, issues regarding the appropriateness and ex-
haustiveness of the “other sources” need to be addressed.
These issues aside, the approach provides a very efficient
means of addressing important clinical questions. For ex-
ample, the sample size for P3S to compare Treatment
Arms with respect to the clinical outcome total 75,000,
more than 50 times the planned recruitment of 1400.

Conclusion
Simulation techniques were used to address two issues
relating to sample size and power for the pessary trial.
Modeling the effect that a treatment by center interaction
has on sample size is challenging because it depends on
many factors, most of which might be unknown at the
time of trial planning. Nonetheless, as illustrated above
employing simulation and sensitivity analysis is a useful
approach for determining sample size requirements while
accounting for the additional uncertainty due to a treat-
ment by center interaction.
It is often the case that an important clinical outcome

is very rare or occurs many years after randomization.
Using a surrogate outcome in conjunction with a Bayes-
ian decision model is an efficient way to compare im-
portant clinical outcomes in a randomized clinical trial
in situations where the direct approach requires a pro-
hibitively high sample size or impossibly long follow-up.
For particular examples simulations can be used to de-
termine the power properties of employing such an
approach.

Appendix
Consider analyzing the data from a multicenter RCT as
one might conduct a random effects meta-analysis. Let
Vi be the variance of the estimator of the parameter of
interest in center i. Then:

V i ¼ σ2S
nSi

þ v2S þ
σ2T
nTi

þ v2T ;

where σS
2 and σT

2 are the between-patient variances of an
observation and nSi and nSi are the sample size for cen-
ter i, for Standard and Treatment Arms respectively, and
vS
2 and vT

2 are the between-center variances of the param-
eter of interest for the Standard and Treatment Arms,
respectively. For the most part vT

2 has assumed to be 0,
but for generalizability values other than 0 values are
considered here.
For the sake of illustration assume that nSi = nSi = n for

all i. Then:
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V i ¼ σ2S þ σ2T
n

þ v2S þ v2T ¼ σ2
S þ σ2T

N= 2Kð Þ þ v2S þ v2T

¼ 2K σ2S þ σ2
T

� �
N

þ v2S þ v2T ;

where N is the total sample size and K is the number of
centers. The variance of the overall estimate of the param-
eter of interest is the inverse of the sum over the K clinical
sites of Vi

− 1. This can be shown to equal:

2 σ2S þ σ2T
� �

N
þ v2S þ v2T

K
:

Thus, the variance of the overall estimate of treatment
effect decreases as the number of centers increases, hold-
ing the total sample size fixed.
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